Prediction of Tourist Quantity Based on RBF Neural Network

نویسندگان

  • HuaiQiang Zhang
  • JingBing Li
چکیده

Fractal property of the knowledge of supply chain is confirmed, and the concept of fractal integration is presented. And the knowledge of supply chain is fractal integrated by building modularization fractal knowledge integration network independent of the organization structure. The process of fractal integration of the knowledge is divided into five stages: acquisition, transition, application, innovation and conversion, and the knowledge entropy model of the various stages is built to quantify and evaluate its integration effect. Finally, the knowledge transition of GE supply chain shows that the fractal knowledge integration can drop entropy significantly, and has higher structure order degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Job Burnout among University Faculty Members of Yazd Payame Noor University Using Artificial Neural Network Technique

Background: Faculty members are one of the main factors in the higher education system, that high level of occupational stress caused by educational, research, and executive duties makes them exposed to burnout. The purpose of this study is Forecasting burnout of faculty members of Yazd Payame Noor University using artificial neural network technique. Methods: The present research is descripti...

متن کامل

Improving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm

Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Prediction of Red Mud Bound-Soda Losses in Bayer Process Using Neural Networks

In the Bayer process, the reaction of silica in bauxite with caustic soda causes the loss of great amount of NaOH. In this research, the bound-soda losses in Bayer process solid residue (red mud) are predicted using intelligent techniques. This method, based on the application of regression and artificial neural networks (AAN), has been used to predict red mud bound-soda losses in Iran Alumina C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012